Алгоритм моделирования и блок-схема модели

Моделирование начинается с розыгрыша энергии первичной частицы. Энергия нидивидуального ливня разыгрывалась согласно диффененциального энергетического спектра $J(E)dE \sim E^{-\gamma+1}$ с показателем $\gamma=3,1$. При этом учитывался порог срабатывания установки по энергии равный ~1.2*10¹⁵ эВ.

Алгоритм моделирования в этом случае можно записать в виде:

$$LgE_o = LgE_n - Lg(\varepsilon/\gamma + 1);$$
 (1)

Где є - равномерно распределенное случайное число от 0 до 1.

После розыгрыша E_o ливня определяем X_{max} , для чего использовали зависимость X_{max} от энергии, полученную для модели QGSJET с параметрами Δ =0,14, коэффициентом неупругости K_{in} =0.6 (при E_o =100ГэВ) и для случая нормального химического состава:

$$X_{max} = 560 + 60 * (LgE_o - 16), c/cM^2$$
 (2)

Так как развитие ШАЛ в атмосфере происходит со значительными флуктуациями, то распределение X_{max} можно аппроксимировать гаммараспределением:

 $W(X_m) \sim X_m / \Lambda - exp(-X_m / \Lambda), \ r \partial e \ \Lambda = \delta_{Xm} / \sqrt{2}.$ (3)

Среднеквадратическое отклонение б_{хт} для модели QGSJET и нормального химического состава первичных космических лучей равно 60 г/см². Таким образом, глубина максимума индиидуального ливня разыгрывалась по следующему алгоритму:

$$X_m = -\Lambda * Ln(\varepsilon_1 * \varepsilon_2) + X_m - 2 * \Lambda. \quad (4)$$

Далее разыгрывает косинус зенитного угла θ по закону соѕ⁶ θ и азимутальный угол ϕ случайным образом от 0 до 360 градусов.

Найденные ранее энергия, глубина максимума X_m, зенитный угол θ полностью определяют индивидуальную каскадную кривую. При этом не рассматриваются флуктуации развития субкаскадов, так как они составляют

всего 5% и флуктуации связанные с переходом к другим моделям адронных взаимодействий.

Согласно работе [4] электро-магнитный каскад в области E₀=10¹⁵-10¹⁷ эВ хорошо описывается выражением:

> $N_e = E_o * 10^{-9} / 1.5 * exp(-((X_o/cos \theta - X_m)/37.1 + Y)*(1-2*lnS) + Y),$ (5) где $Y = 0.8 * Ln(E_o/0.81)$, а S – возраст ливня.

Возраст ливня находится из формулы:

 $S = 2/(1 + Y/((X_o/\cos\theta - X_m)/37.1 + Y)) \quad (6)$

Для уровня нашей установки $X_o = 1020$ г/см². По формуле (5) для известных E_o и θ находим N_e – полное число заряженных частиц. По формуле (6) – возраст ливня S. Таким образом, мы получили исходные параметры искусственного ливня: E_o , N_e , S, X_m .

Оси искусственного ливня моделируются по методу Монте-Карло случайным образом по нормальному распределению согласно дифференциальному энергетическому спектру.

Далее по формулам p(R) и Q(R) для этих параметров находим исходные плотности заряженных частиц и потока черенковского света.

Оценка точности измерения плотности потока черенковского света и потока заряженных частиц ШАЛ на Якутской установке была сделана в 70-е начале 80-х годов по прямым измерениям разными способами. Используя эти данные мы задаем p(R) и Q(R), с помощью которых определяются другие параметры ШАЛ по программам обработки принятым на МАЧУ (МАлая Черенковская Установка):

$$\rho(R) = \rho^{T}(R) * \left[1 + \varepsilon * \sqrt{0.02 + \frac{0.3}{\rho^{T}(R) * \cos\theta}} \right]$$
$$Q(R) = Q^{T}(R) * \left[1 + \varepsilon * \sqrt{0.05 + \left(\frac{0.3 * Q_{nop}}{Q^{T}(R)}\right)^{2}} \right]$$

Результаты полного математического моделирования показали: случайные ошибки оказались равными 20% для измерения первичной энергии ливня. Точность оценки параметров каскадной кривой составила: Xmax – 65 г/см², Ne – 10%, S – 5%.

Рис. 1. Зависимость глубины максимума развития ШАЛ от энергии первичной частицы

Голубой линией показаны результаты моделирования, а точки - экспериментальные данные.

Рис. 2. Функция пространственного распределения заряженной компоненты ШАЛ. Голубая линия получена расчетами, а точки – экспериментальные данные Якутской малой черенковской установки.

Рис. 3. Зависимость полного числа заряженных частиц N_e от энергии первичной частицы $E_{\rm 0}$