
Parallel Tabu Search Algorithm for Data Structure

Composition

Eduard Babkin1, Margarita Karpunina
2
 and Natalia Aseeva

3
,

National Research University – Higher School of Economics

Dept. of Information Systems and Technologies,

Bol. Pecherskaya 25,

603155 Nizhny Novgorod, Russia
1 eababkin@hse.ru

2 karpunina-margarita@yandex.ru
3 naseeva@hse.ru

Abstract. In this paper we propose a parallel tabu search algorithm to solve the

problem of the distributed database optimal logical structure synthesis. We

provide a reader with information about the performance metrics of our parallel

algorithm and the quality of the solutions obtained in comparison with the

earlier developed consecutive algorithm and other methods.

Keywords: Neural networks, tabu search, parallel programming, distributed

databases.

1 Introduction

The problems of optimal composition of complex data structures play an extremely

important role in many critical applications varying from cloud computing to

distributed databases (DDB) [1]. In later class of applications that problem is usually

formulated as synthesis of optimal logical structure (OLS). In accordance with [2] it

consists of two stages. The first stage is a composition of logical record (LR) types

from a set of atomic data elements (DE). The second stage is irredundant allocation of

LR types among nodes in the computing network (CN). For each stage various

domain-specific constraints are introduced as well as optimum criteria are specified.

From mathematical point of view the specified problem is a NP-complete non-

linear optimization problem of integer programming. So far different task-specific

approaches were proposed such as branch-and-bound method with a set of heuristics

(BBM) [3], probabilistic algorithms, etc. However not many of them exploit benefits

of parallel processing and grid technologies [4], [5], [6], [7].

In previous works the authors developed the exact mathematical formalization of

the OLS problem in terms of neural networks and offered the sequential modified

Tabu Search (TS) algorithm which used as a state transition mechanism by different

Tabu Machines (TM) for each stage of the solution [8], [9]. The constructed algorithm

produced solutions with good quality, but it was computationally efficient for small

mock-up problems only.

In the present article we propose a new distributed model of TM (DTM) and a

computationally efficient parallel algorithm for solution of complex OLS problems.

The article has the following structure. In Section 2 we outline critical elements of

TM. For the sake of consistency Section 3 briefly presents formal definition of OLS

problem and our previous proposals of that problem mapping onto the consecutive

TM. In Section 4 general description of newly proposed DTM-algorithm is given and

Section 5 specifies it in details. Section 6 describes evaluation of the proposed parallel

algorithm. Overview of the results in Section 7 concludes the article.

2 Short Overview of Tabu Machine Model and Dynamics

In our work we use the generic model of TM as it was specified by Minghe Sun and

Hamid R. Nemati [10] with the following important constituents.

1{ ,..., }nS s s= is the current state of the TM, it is collectively determined by the

states of its nodes.
0 0

0 1{ ,..., }nS s s= is the state of the TM with the minimum energy among all states

which are obtained by the current moment within the local period (or within the short

term memory process (STMP)).
00 00

00 1{ ,..., }nS s s= is the state of the TM with the minimum energy among all states

which are obtained by the current moment (within both the STMP and the long term

memory process (LTMP)).

1{ ,..., }nT t t= is a vector to check the tabu condition.

()E S is the TM energy corresponding to the state S .

0()E S is the TM energy corresponding to the state 0S .

00()E S is the TM energy corresponding to the state 00
S .

k is the number of iterations (i.e. the number of neural network (NN) transitions

from the one state to another) from the outset of the TM functioning.

h is the number of iterations from the last renewal the value of 0()E S within the

STMP.

c is the number of the LTMPs carried out by the current moment.

The following variables stand as parameters of the TM-algorithm:

l is the tabu size,

β is the parameter determining the termination criterion of the STMP,

C is a maximum number of the available LTMPs inside the TM-algorithm.

The state transition mechanism of the TM is governed by TS and performed until

the predefined stopping rule is satisfied. Let’s name this sequence of state transitions
as a work period of the TM. It is advisable to run the TM for several work periods. It

is better to begin a new work period of the TM using information taken from the

previous work periods, from a “history” of the TM work by applying LTMP. In such

a case TS algorithm finds a node which has not changed its state for the longest time

among all neurons of the TM. And then this node is forced to switch its state.

3 A Consecutive TM-Algorithm for OLS Problem

As [2] states, the general problem of DDB OLS synthesis consists of two stages.

1. Composition of logical record (LR) types from data elements (DE) using the

constraints on:

a. the number of elements in the LR type;

b. single elements inclusion in the LR type;

c. the required level of information safety of the system.

In addition, LR types synthesis should take into account semantic contiguity of

DEs

2. Irredundant allocation of LR types among the nodes in the CN using the
constraints on:

a. irredundant allocation of LR types;

b. the length of the formed LR type on each host;

c. the total number of the synthesized LR types placed on each host;

d. the volume of accessible external memory of the hosts for storage of

local databases;

e. the total processing time of operational queries on the hosts.

The objective of OLS synthesis is to minimize the total time needed for

consecutive processing of a set of DDB users’ queries. Such problem has an exact but

a very large mathematical formalization. So, we provide it in the Appendix I and

Appendix II of this paper due to its limited size and should refer to [2], [3], [8], [9] for
further details.

In our previous work [9] we have offered a new method for formalization of the

described problem in the terms of TM and have constructed TMs’ energy functions as

follows. TM for the first stage consists of one layer of neurons, connected by

complete bidirectional links. The number of neurons in the layer is equal to 2
I , where

I is the number of DEs. Each neuron is supplied with two indexes corresponding to

indexes of DEs and LRs. For example, 1xiOUT = means, that the DE x will be

included to the i -th LR. All outputs xiOUT of a network have a binary nature, i.e.

accept values from set {0,1}. The following TM energy function for LR composition

was proposed:

() () ()

() ()

1 1 1

1 1 1 1

2
1 1

1 1 1

1
1 1 2 1

2

_ _
2 2

I I I I
g

xy ij ij xy xy ij

i j x y

I I I
g

xy yx xi yj xy xi

i x y i
y x

E A B a D

B C
incomp gr incomp gr OUT OUT a OUT

F

= = = =

= = =
≠

= − ⋅ − ⋅δ ⋅ − δ + ⋅δ ⋅ − δ ⋅ ⋅ − − ⋅δ ⋅

 
 ⋅ + ⋅ ⋅ + ⋅ + ⋅  ⋅
  

∑ ∑ ∑ ∑

∑ ∑ ∑

(1)

Here () () () (, 1 1 11 1 2 1 _g

xi yj xy ij ij xy xy ij xyw A B a D incomp gr= − ⋅δ ⋅ −δ + ⋅δ ⋅ −δ ⋅ ⋅ − − ⋅δ ⋅ +

)_
yx

incomp gr+ are weights of neurons, ()
2

1 1

12 2

I
g

xi xy

y i
y x

B C
T a

F=
≠

 
 = ⋅ +
 ⋅ 
 

∑ are neurons’

thresholds.

The quality of logical record types composition is estimated by the value of
qN

parameter defined by the following formula

()

()
%100

1

1 1 1

2

⋅
−⋅

−⋅

=

∑∑∑
= =

≠
=

II

aOUTOUT

N

I

i

I

x

I

xy
y

g

xyyixi

q

.

(2)

The best value for
qN is zero. The values of

qN parameter for mock-up problems

solutions are shown in Table 1.

Table 1. The values of
qN parameter (%) for mock-up problems solutions.

 10=I 20=I 40=I

 BBM

 15,6 36,3 18,3

 NN-GA-algorithm

 2,2 31,6 16,3

 TM-algorithm

Maximum % 35,6 36,3 12,6

Average % 16,1 34,8 12,5

Minimum % 4,4 28,4 12,2

For the second stage of irredundant LR allocation we offered TM with the same

structure as TM for LR composition, but the number of neurons in the layer is equal

to 0T R⋅ , where T is the number of LRs, synthesized during LR composition, 0R is

the number of the hosts available for LR allocation.

As a result of constraints translation into the terms of TM the following TM energy

function for the LR allocation was obtained:

()

() ()
()

0 0 0

1 2 1 2 1 1 2 2

1 2 1 2 1 1 1 1

0
1 1 1

1 1 1 1

1 1

2 0
2

1 1 1 1 1 1

22 02

1 1 1

1
1

2 2

2 2 2

R R RT T T

t t r r t r t r

r r t t r t t r

srh PI I
r r pt

it i i i it t rEMD
i i pr r p

B
E A OUT OUT

E t t SNDC
x x OUT

h T

= = = = = =

= = =

 ⋅ψ = − ⋅ − ⋅δ ⋅ − δ ⋅ ⋅ + ⋅  ⋅θ

⋅ +  ⋅ψ
⋅ ⋅ρ + + ⋅ ρ ⋅π ⋅ + ⋅ ⋅  ⋅ ⋅η  

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

(3)

Here ()
1 1 2 2 1 2 1 2, 2 1
t r t r t t r r

w A= − ⋅δ ⋅ − δ are weights of neurons,

() ()
() 0

1 1 1

1 1 1 1

1 1 1 1

22 0 2 02

1 1 12 2 2 2

srh PI I
r r pt

t r it i i i itEMD
i i pt r r r p

E t t SNB DC
T x x

h T= = =

⋅ +  ⋅ψ ⋅ψ
= ⋅ ⋅ρ + + ⋅ ρ ⋅ π ⋅ + ⋅   ⋅θ ⋅ ⋅η  

∑ ∑ ∑

are neurons’ thresholds. Here the I is the number of DEs, 1

1 1 1 1

t

pr t r pt
z OUT SN= ⋅ and

1pt
SN is introduced as a normalized sum, i.e.

1

1

1

1

1

1, if 1

0, if 0

I
Q

pi it

i

pt I
Q

pi it

i

w x

SN

w x

=

=


≥


= 
 =


∑

∑

, where

Q

piw is the matrix of dimension ()0P I× . That matrix shows which DEs are used

during processing of different queries.

In [9] we also compared the developed TM-algorithm with other methods like [10]

to estimate an opportunities and advantages of TS over our earlier approaches based

on Hopfield Networks [11] or their combination with genetic algorithms (NN-GA-

algorithm) [2]. Using a high-dimensional mock-up problem we found that TM

solutions overcome solutions received by NN-GA-algorithm in terms of average

quality on 8,7%, and overcome the quality of solutions received by BBM on 23,6%

(refer to Fig. 1). CPU time for LR composition was on average 36% less that the same

spent by the Hopfield Network approach. So, our TM is able to produce considerable

better solutions. However this algorithm is time consuming on high-dimensional

tasks, and therefore we need to construct a parallel TM-algorithm in order to validate

our approach on the high-dimensional tasks and increase the performance. Moreover,
the parallel algorithm helps us to reveal the influence of the tabu parameters on the

tasks’ solution process and to determine the dependency between tabu parameters and

characteristics of our problem in order to obtain better solutions faster.

Fig. 1. The value of objective function on mock-up problems solutions.

4 A General Description of DTM Functioning

The newly proposed parallel algorithm of TM exploits parallelization capabilities of

the following procedures:

1. finding a neuron to change its state;

2. changing the value of ()iE S∆ of neurons for using it on the next iteration;

3. calculation of energy function value;

4. calculation of values of auxiliary functions used in aspiration criteria of TM;

5. transition from one local cycle to the other.

For the case of the homogeneous computational parallel cluster with multiple

identical nodes the following general scheme of new parallel functionality is

proposed. The set of neurons of the whole TM is distributed among all nodes’

processors according to the formula
1 2

1

1, if

, otherwise
p

n p n
N

n

+ <
= 


, where 1 2, mod
N

n n N P
P

 
= =  

,

N is the number of neurons in the whole TM, 0, (1)p P= − is the index of processor,

P is the number of processors. The number of Tabu sub-machines (TsMs) is equal to

the number of available processors. So, one TsM is located on each processor and

TsM with index p consists of pN neurons. During the initialization stage neural

characteristics are set to each neuron. The scheme of DTM is depicted on Fig. 2.

Fig. 2. DTM scheme (left) and method of pW construction from the whole matrix W (right)

for the case with 9N = and 4P = .

The same figure shows how the weight matrix of each TsM

{ }
1

0 0

; 1, ; 1, ; 1, ; 1,
p p

p

p ij p ij k k

k k

W w i N j N w i N N j N
−

= =

  
= = = = = + = 

  
∑ ∑ is constructed from the

weight matrix { }; , 1,ijW w i j N= = of the whole TM. When the optimal state of DTM is

achieved, the results from all TsMs are united. For the proposed method of the whole

TM decomposition the proposition that the energy of the whole TM is additive on the

energies of TsMs including in the DTM, i.e.
1

0 1 1

0

P

P p

p

E E E E E
−

−
=

= + + + =∑… , is formulated

and proofed by authors but due to lack of the space is omitted in that article.

Let’s consider a common implementation of DTM taking into account a parallel

implementation of foregoing procedures.

Initialization. This stage assumes the construction and initialization of TsMs

including into the DTM. These procedures are conducted following the mentioned

above scheme of distribution of DTM neurons among the set of available processors.

After the structure of each TsM is defined, TsMs are provided with the following

characteristics: the matrix of neurons weights, vector of neurons thresholds, and

vector of neurons biases. Thus, on the current stage we have the set of TsMs, and the

elements of this set are

{ } (), , , , 0, 1p p p p psubTM W I T In p P= = − , (4)

where psubTM is p -th TsM, pW is the matrix of its neurons weights, pI is the vector

of neurons biases, pT is the vector of neurons thresholds, and pIn is the vector of

initial states of TsM’s neurons. Matrixes pW and vectors pI and pT are defined

according to the following formulas:

{ }

{ }
{ }

{ }

{ }
{ }

0 0

0
0

1 0 0 1

11

2 1
11

1

0 0

; 1, ; 1,
; 1, ; 1,

; 1, ; 1,
; 1, ; 1,

; , 1,

; 1, ; 1, ; 1, ; 1,

ij

ij

ij

ij

ij

P P
PP
ij P ij k k

k k

w i N j N
w i N j N

W
w i N N N j N

w i N j NW
W w i j N

W
w i N j N w i N N j N

− −
−−

−
= =

= = = =
   

= + + =   = =   = = = = =
   
           = = = + =    

∑ ∑

�� �

 
 
 
 
 
 
 
 
  

(5)

{ }

{ }
{ }

{ }

{ }
{ }

0 0

0
0

1 0 0 1

11

2 1
11

1

0 0

; 1,
; 1,

; 1,
; 1,

; 1,

; 1,; 1,

j

j

j

j

j

P P
PP

j k kj P

k k

i j N
i j N

I
i j N N N

i j NI
I i j N

I
i j N Ni j N

− −
−−

−
= =

 = =  
     = + +     =   = = = = =  
     
             = +=         

∑ ∑

�
� �

(6)

{ }

{ }
{ }

{ }

{ }
{ }

0 0

0
0

1 0 0 1

11

2 1
11

1

0 0

; 1,
; 1,

; 1,
; 1,

; 1,

; 1,; 1,

j

j

j

j

j

P P
PP

j k kj P

k k

t j N
t j N

T
t j N N N

t j NT
T t j N

T
t j N Nt j N

− −
−−

−
= =

 = =  
     = + +     =   = = = = =  
     
             = +=         

∑ ∑

�
� �

(7)

Vector In of initial states of the whole TM neurons is random generated, and then

cut on P parts. Each part (i.e. pIn) corresponds to the concrete TsM.

The local cycle of the TM. Let’s consider the local cycle of DTM.

Choose the neuron-candidate for the next move. The first step of the TM local

cycle is the search of the neuron for each TsM which should change its state on the

current iteration. The criterion to choose such a neuron is defined as the following:

{ }{ }
()

0
() min () | 1, : () () ()

0, 1

p j p i p j p p j p
E S E S i N k t l E S E S E S

p P

∆ = ∆ = − ≤ ∨ + ∆ <

= −

.
(8)

Thus, the search of neurons satisfied to the condition (8) is performed in parallel on
the hosts of CN.

The comparison of found neurons. After the neuron satisfied to the condition (8) is

found on each host, the search with help of STMP reduce operations defined by

authors for MPI_Allreduce function is performed within the whole DTM to find the

neuron *j , such that (){ }*() min () | 0, 1p jj
E S E S p P∆ = ∆ = − .

Change the energy value of neurons. After the required neuron *j has been found,

and each TsM has information about it, each neuron of psubTM , ()0, 1p P= −

changes its ()iE S∆ value. The calculation of DTM energy function change is done in

parallel on each psubTM . Further the cycle is repeated following described scheme

until the condition of exit from the local cycle of the TM is satisfied.

The global cycle of the TM. We select neuron, that didn’t change its state longest,

on each TsM. The number j of this neuron on each psubTM is defined according to

the following criteria:

() { } ()min | 1, , 0, 1j i pp
t t i N p P= = = − . (9)

The search of ()j p
t is done on the available processors in parallel according to the

formula (8).

The comparison of found neurons. After the neuron satisfied to the condition (9) is

found on each host, the search with help of LTMP reduce operations defined by

authors for MPI_Allreduce function is performed within the whole DTM to find the

neuron *j , such that () (){ }* min | 0, 1jj p
t t p P= = − .

Change the energy value of neurons. After the required neuron *j has been found,

and each TsM has information about it, each neuron of psubTM , ()0, 1p P= −

changes its ()iE S∆ value. The calculation of DTM energy function change is done in

parallel on each psubTM . Further the cycle is repeated following described scheme

until the number of LTMP calls will exceed : , 0C C Z C+∈ ≥ times. After that the

search is stopped and the best found state is taken as the final DTM state.

5 The Algorithm of DTM Functioning

Let’s try to represent the general description as an algorithm outlined step by step. We

will use the following notations: N is the number of neurons in the DTM, i.e.

0 00S S S N= = = ;
p

N is the number of neurons including into the TsM
p

subTM ,

where ()0, 1p P= − ; P is the number of processors on which DTM operates.

Step 1. Construct TsMs psubTM and randomly initialize initial states of its

neurons. Define the tabu-size l of DTM. Let 0h = and 0k = are counters of iterations

in the frame of the whole DTM. Let 0c = , and 0C ≥ is the maximum number of

LTMP calls in the frames of the whole DTM. Let 0β > is defined according to

inequality N lβ ⋅ > in the frames of the whole DTM too.

Step 2. Find the local minimum energy state
0S . Calculate

0()E S and

0 0

1

1 0 0 1
2

2 1

1

0 0

(), 1,
()

(), 1,
()

() , 1,

() (), 1,

i

i

P P

N P i k k

k k

E S i N
E S

E S i N N N
E S

E S i N

E S E S i N N
− −

−
= =

 ∆ =
∆   

∆ = + +  
∆   ∆ = = =

  
  

∆     ∆ = +
  

∑ ∑

�
�

.

(10)

The values of ()0pE S and ()
p i

E S∆ for ()0, 1p P= − are calculated in parallel on P

processors. Let 00 0S S= is the best global state, and 00 0() ()E S E S= is the global

minimum of energy. Let 0S S= and 0() ()E S E S= . Let , 1,it i N= −∞ ∀ = .

Step 3. In the frames of each p
subTM choose the neuron j with ()

p j
E S∆ satisfied

to { }{ } ()0() min () | 1, : () () () , 0, 1p j p i p j p p j pE S E S i N k t l E S E S E S p P∆ = ∆ = − ≤ ∨ + ∆ < = − .

Step 4. Using STMP reduce operations defined by authors, form the set

{ *

*, (),
j

j E S∆ }*j
s , where *

j is the index of neuron (in the frames of the whole DTM)

changing its state at the current moment, *()
j

E S∆ is the change of DTM energy

function value after the neuron *
j has changed its state, *j

s is a new state of neuron

*
j .

Step 5. If psubTM contains the neuron *
j , then *j

t k= , * *1
j j

s s= − .

Step 6. Let *j
t k= , 1k k= + , 1h h= + , *j

S S= , *() () ()
j

E S E S E S= + ∆ in the frames of

the whole DTM.

Step 7. Update ()E S∆ using (10). The values of ()p iE S∆ are calculated in parallel

on P processors.

Step 8. Determine if a new state S is a new local and / or global minimum energy

state: if
0() ()E S E S< , then

0S S= ,
0() ()E S E S= and 0h = ; if

00() ()E S E S< , then

00S S= and 00() ()E S E S= in the frames of the whole DTM.

Step 9. If h Nβ< ⋅ , go to Step 3., else go to Step 10.

Step 10. If c C≥ , then the algorithm stops.
00S is the best state. Else, in the frames

of each
p

subTM choose in parallel the neuron j with ()j p
t satisfied to () min{ |j ip

t t=

()1, }, 0, 1pi N p P= = − . Using LTMP reduce operations defined by authors, form the set

{ }* *

*, (),
j j

j E S s∆ , where *
j is the index of neuron (in the frames of the whole DTM)

changing its state at the current moment, *()
j

E S∆ is the change of DTM energy

function value after the neuron *
j has changed its state, *j

s is a new state of neuron

*
j . Let *0 j

S S= and *0
() () ()

j
E S E S E S= + ∆ , 1c c= + and 0h = . Go to Step 6.

It’s worth mentioning that on the Step 10. a new state of local energy minimum

0()E S is set without any auxiliary checks, i.e. it can be worse than the previous
0S .

Exploiting this technique we exclude stabilization in local energy minimums and

expand areas of potential solutions.

6 Performance Evaluation

In order to evaluate the performance of constructed DTM the set of experiments on

mock-up problems with DTM consisting of 100N = , 400N = and 1600N = neurons

were done on multi-core cluster. 372 trial solutions were obtained for each mock-up

problem depending on the values of < l, C, β > parameters of DTM.

We proposed to use an average acceleration as the metric to evaluate efficiency of

DTM. The dependency of average acceleration on the number of processors for

mock-up problem with 1600N = is depicted on Fig. 3. DTM gives a linear

acceleration.

Fig. 3. Average acceleration for mock-up problem with 1600N = .

7 Conclusion

In this paper we proposed parallel TM-algorithm for DDB OLS synthesis problem.

The constructed DTM was validated and compared with the sequential TM. As

expected, both approaches give the same results with the solutions quality higher than

the quality of solutions received by NN-GA-algorithm [2], [8] on average 8,7% and

by BBM [3] on average 23,6% on mock-up problem with higher dimension.
DTM was applied to recomposition of logical record types for the database used by

human resource management tool in the international IT-company. The result set of

logical record types takes the semantic contiguity of DEs on 7,5% better than the

currently existing structure.

It is worth mentioning that during the DTM cycles intensive data communication

between processors is carried out in the proposed algorithm. DTM provides a linear
acceleration. Therefore, we can speak about the significant increasing of DTM

performance in compare with its consecutive analogue for the high-dimensional

problems. This statement is not contrary to our objectives, because the problem of

DDB OLS synthesis is important today in view of high dimensionality.

The research was supported by Scientific Fund of NRU HSE (grant #10-04-0009).

References

1. Kant K., Mohapatra P. Internet Data Centers. Computer, Published by the IEEE Computer

Society. 0018-9162/04 (2004)

2. Babkin E., Petrova M. Application of genetic algorithms to increase an overall performance

of artificial neural networks in the domain of synthesis DDBs optimal structures. Proc. Of

The 5th International Conference on Perspectives in Business Informatics Research (BIR

2006) October 6-7, 2006 Kaunas University of Technology, Lithuania. ISSN: 1392-124X

Information Techonology and Control, vol. 35, No. 3A, pp. 285-294 (2006)

3. Kulba V.V., Kovalevskiy S.S., Kosyachenko S.А., Sirotyuck V.О. Theoretical backgrounds

of designing optimum structures of the distributed databases. M.: SINTEG (1999)

4. Chakrapani J., Skorin-Kapov J. Massively parallel tabu search for the quadratic assignment

problem, Annals of Operations Research 41, pp. 327-341 (1993)

5. Fiechter C.-N. A parallel tabu search algorithm for large traveling salesman problems.

Discrete Applied Mathematics, vol. 51, pp. 243-267. ELSEVIER (1994)

6. Garcia B.-L. et al. A parallel implementation of the tabu search heuristic for vehicle routing

problems with time window constraints, Computers Ops Res, vol. 21, No. 9, pp. 1025-1033

(1994)

7. Porto Stella C. S., Kitajima Joao Paulo F. W., Ribeiro Celso C. Performance evaluation of a

parallel tabu search task scheduling algorithm. Parallel Computing, vol. 26, pp. 73-90.

ELSEVIER (2000)

8. Babkin E., Karpunina M. Comparative study of the Tabu machine and Hopfield networks

for discrete optimization problems. Information Technologies’2008. Proc. Of the 14th

International Conference on Information and Software Technologies, IT 2008. Kaunas,

Lithuania, April 24-25. ISSN 2029-0020. pp. 25-41 (2008)

9. Babkin E., Karpunina M. The analysis of tabu machine parameters applied to discrete

optimization problems // Proceedings of 2009 ACS/IEEE International Conference on

Computer Systems and Aplications, AICCSA’2009. – May 10-13, 2009. – Rabat, Morocco.

– pp. 153-160. Sponsored by IEEE Computer Society, Arab Computer Society, and EMI,

Morocco (2009) IEEE Catalog Number: CFP09283-CDR. ISBN: 978-1-4244-3806-8.

Library of Congress: 200990028. http://www.congreso.us.es/aiccsa2009

10.Sun M., Nemati H. R. Tabu Machine: A New Neural Network Solution Approach for

Combinatorial Optimization Problems, Journal of Heuristics, vol. 9, pp. 5-27 (2003)

11. Babkin E., Karpunina M. About one method of DDBs structure synthesis based on the

Hopfield artificial neural networks. Bulleten of Russian Academy of Engineering Science by

A.M.Prokchorov, Applied mathematics and mechanics, Moscow − Nizhny Novgorod:

NSTU, vol. 12, pp. 37-46 (2005)

Appendix I: Formal Characteristics of the Subject Domain

The name The designation

Characteristics of a DDB structure

The set of data elements { }/ 1,
g

id i I= =G
D

The vector of elements lengths { }iρ=ρ

The vector of data element’s

instantiation numbers
{ }iπ=π

The matrix of a semantic contiguity

of data elements

'

g

ii
a=GA , where ' 1g

ii
a = if there is a

semantic connection between the i -th and
'

i -th

elements, ' 0g

ii
a = − otherwise

Characteristics of user’s queries

The set of user’s queries { }0
/ 1,q

p
p P= =Q

The matrix of data elements usage

during processing of queries

Q

piw=Q
W , where 1

Q

piw = if query p

uses (during processing time) the i -th element,

0
Q

piw = − otherwise

The name The designation

The matrix of frequencies of

queries used by the users

Q

kpξ=Q
Λ , where

Q

kpξ is the frequency

of the usage of the p -th query by the user k

Characteristics of the users

The set of the users { }0/ 1,ku k K= =U

The matrix of an attachment of the

users to hosts in the computing

network

krν=ν , where 1krν = if the k -th

user is attached to host r of computing

network, 0krν = − otherwise

The matrix of queries usage by the

DDB users

Q

kpϕ=Q
Φ , where 1

Q

kpϕ = if user k

uses query p , 0
Q

kpϕ = − otherwise

The matrix of an attachment of the

queries to client hosts

Q

prδ=Q
∆ , where

1
Q

prδ = if
0

1

1
k

Q

kr kp
k

ν ϕ
=

≥∑ ; 0
Q

prδ = if

0

1

0
k

Q

kr kp
k

ν ϕ
=

=∑

Characteristics of the set of computing network’s hosts

The characteristics of the set of

computing network’s hosts
{ }0/ 1,n

r
r R= =N

The vector of memory volumes on

servers

of computing network, accessible

to the user

{ }EMD

rη=EMD
η , where

EMD

rη is the

value of accessible external memory on server at

host r in the computing network

Average initial time characteristics

The average time of assembly of

the data block at formation of queries’

data array

ass
t

The average time of one query

formation
dis

t

The average time of a route choice,

establishment of logic (virtual)

connections between the client-host

(
1r) and server-host (

2r)

1 2

ser

r r
t

The average time of transfer of one

data block (logical record) of query or

transaction from the client-host (1r) on

the server site (2r) on the shortest way

1 2

trf

r r
t

The average time of access to LDB

files and search in them of required

logical records

srh
t

The average time of processing of

one logical record on the server-host

(
2r), dependent of productivity of the

server

2r
t

1itx = if the i -th data element (DE) is included into the t -th logical record (LR)

type; 0itx = , otherwise.

1try = if the t -th LR type is allocated to the server of the r -th host in the

computing network; 0try = , otherwise.

2
1t

pr
z = if

2

1

1
I

Q

tr pi it

i

y w x
=

≥∑ ;
2

0t

pr
z = if

2

1

0
I

Q

tr pi it

i

y w x
=

=∑ . Variable
2

t

pr
z defines types

of LRs used by the p-th query on the server of the 2r -th host in the computing

network.

2
1

pr
z = if

2

1 1

1
T I

Q

tr pi it

t i

y w x
= =

≥∑∑ ;
2

0
pr

z = if
2

1 1

0
T I

Q

tr pi it

t i

y w x
= =

=∑∑ . Variable
2pr

z defines

a set of LDB server-hosts to which the p -th query addresses. T is a number of LRs

types synthesizing in the solution process.

Appendix II: Mathematical Statement of the Problem

The general task of DDB OLS synthesis by criteria of a minimum of total time

needed for consecutive processing of a set of DDB users’ queries is formulated in the

following way:

()
0 0 0 0 0

1 2 1 2 1 2 2 2 2 2

1 2 2

{ , }
1 1 1 1 1 1 1

min 1
it tr

K P R R RT T
Q Q dis ser trf t ass t srh

kp kp kr pr r r r r pr pr r r
x y

k p r r t r t

z t t t z t z t tξ ϕ ν
= = = = = = =

     
⋅ ⋅ ⋅ ⋅ + + ⋅ + + + ⋅ +    

     
∑∑ ∑ ∑ ∑ ∑∑

subject to

1. the number of elements in the LR type
1

, 1,
I

it t

i

x F t T
=

≤ ∀ =∑ , where tF is

maximum number of elements in the record t ;

2. single elements inclusion in the LR type
1

1, 1,
T

it

t

x i I
=

= ∀ =∑ ;

3. the required level of information safety of the system ' 0it i tx x = for given id

and 'id ;

4. irredundant allocation of LR types
0

1

1, 1,
R

tr

r

y t T
=

= ∀ =∑ ;

5. the length of the formed LR type 0

1

,
I

it tr i tr

i

x y ρψ θ
=

≤∑
01, , 1,t T r R∀ = ∀ = ,

where
trθ is the greatest allowable length of the record t determined by

characteristics of the server r ;

6. the total number of the synthesized LR types placed on the server r :

0

1

, 1,
T

tr r

t

y h r R
=

≤ ∀ =∑ , where rh is the maximum number of the LR types

supported by the local database management system of the server-host r ;

7. the volume of accessible external memory of servers

0 0

1 1

, 1,
T I

EMD

i i it tr r

t i

x y r Rψ ρ π η
= =

≤ ∀ =∑∑ for storage of local databases;

8. the total processing time of operational queries on servers
0

0

1 1

() , 1,
R T

t srh

pr r r p

r t

z t t T p P
= =

⋅ + ≤ ∀ =∑∑ for given pQ Q∈ , where pT is the

allowable processing time of p needed for search.

